<span id="ibys8"></span>
    1. <i id="ibys8"></i>
        <label id="ibys8"><legend id="ibys8"><th id="ibys8"></th></legend></label>
      1. 无码福利写真片视频在线播放 ,国产日韩一区二区在线,3d无码纯肉动漫在线观看,护士张开腿被奷日出白浆,中文午夜乱理片无码,国产小受被做到哭咬床单GV,无码人妻aⅴ一区二区三区蜜桃 ,午夜精品福利亚洲国产

        行業產品

        • 行業產品

        北京博倫經緯科技發展有限公司


        當前位置:北京博倫經緯科技發展有限公司>>>>HPV 莖流量傳感器/Sap Flow Sensor

        HPV 莖流量傳感器/Sap Flow Sensor

        返回列表頁
        參  考  價面議
        具體成交價以合同協議為準

        產品型號HPV

        品       牌

        廠商性質其他

        所  在  地

        聯系方式:查看聯系方式

        更新時間:2022-10-22 17:10:57瀏覽次數:148次

        聯系我時,請告知來自 環保在線


          暫無信息


          暫無信息

        經營模式:其他

        商鋪產品:350條

        所在地區:

        產品簡介

        HPV 莖流量傳感器/Sap Flow Sensor

        詳細介紹

        HPV 莖流量傳感器/Sap Flow Sensor

        T{UW85(FAJMR)E12L3I[RUG.png

        HPV莖流量傳感器是一款校準型、低成本的熱脈沖液流傳感器,輸出校準液流量、熱速、莖水含量、莖溫等數據,功耗低,內置加熱控制,同時改善了傳統的加熱方式,其原理采用雙方法(DMA)熱脈沖法,測量范圍:-200~+1000cm/hr(熱流速度)或-100~+2000cm3/cm2/hr (莖流通量密度),可廣泛用于于莖流量監測、植物莖流蒸發計算、植物莖流蒸騰量、植物灌溉等
        植物莖流是樹木內部的“水"運動,而蒸騰是從葉片通過光合作用蒸發流出的水分。樹液流量和蒸騰量之間有很強的關聯性,通常理解是同一回事。但是,嚴格地說,它們是不同的,這體現在它們是如何被測量的。
        SAP流量以L/hr(或每天、每周等)為單位進行測量。蒸騰量以每小時、每天、每星期等毫米(mm)為單位測量。
        蒸散量=蒸騰量+蒸發量
        蒸騰量以毫米為測量單位,可與降雨量以毫米計作比較。隨著時間的推移,降雨量(水輸入)應與蒸騰量(輸出)相匹配。如果蒸騰作用更高,通常是樹木作物的蒸騰作用,那么這種差異必須通過灌溉來彌補。
        蒸發量(evaporation),蒸發量是指在一定時段內,由土壤或水中的水分經蒸發而散布到空中的量。

        1mm(降雨量)=1㎡地面1kg水
        1mm(蒸騰量)=1㎡葉面積的1升樹液流量(水)

        例如:在果園和葡萄園等有管理的樹木作物系統中,蒸發量與蒸騰量相比非常小。因此,為了簡化測量,通常忽略蒸發量,將蒸騰量取為平均蒸散量(ETo)。

        莖流量傳感器廣泛應用
        計算總流量
        低液流和零液流速率
        反向液流速率
        夜間水分損失
        根莖液流速度
        貧瘠生態系統及干旱
        徑向液體流速
        葡萄藤的液流

        莖流量傳感器 技術指標
        測量范圍:-200~+1000cm/hr(熱流速度)
        分辨率:0.001cm/hr
        準確度:±0.1cm/hr
        探針尺寸:φ1.3mm*L30mm
        溫度位置:外10mm,內20mm
        針距:6mm
        探針材質:316不銹鋼
        溫度范圍:-30~+70℃
        響應時間:200ms
        加熱電阻:39Ω,400J/m
        電源:12V DC
        電流:空閑5mA, 測量<270mA
        線纜:5m,*大60m



        莖流量傳感器參考文獻:
        1. Kim, H.K.; Park, J.; Hwang, I. Investigating water transport through the xylem network in vascular plants.
        J. Exp. Bot. 2014, 65, 1895–1904. [CrossRef] [PubMed]

        2. Steppe, K.; Vandegehuchte, M.W.; Tognetti, R.; Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015, 35, 341–345. [CrossRef] [PubMed]

        3. Vandegehuchte, M.W.; Steppe, K. Sap-flux density measurement methods: Working principles and
        applicability. Funct. Plant Biol. 2013, 40, 213–223. [CrossRef]

        4. Marshall, D.C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 1958 , 33, 385–396.
        [CrossRef] [PubMed]

        5. Cohen, Y.; Fuchs, M.; Green, G.C. Improvement of the heat pulse method for determining sap flow in trees. Plant Cell Environ. 1981, 4, 391–397. [CrossRef]

        6. Green, S.R.; Clothier, B.; Jardine, B. Theory and practical application of heat pulse to measure sap flow.
        Agron. J. 2003, 95, 1371–1379. [CrossRef]

        7. Burgess, S.S.O.; Adams, M.A.; Turner, N.C.; Beverly, C.R.; Ong, C.K.; Khan, A.A.H.; Bleby, T.M. An improved heat-pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001 , 21, 589–598. [CrossRef]

        8. Forster, M.A. How reliable are heat pulse velocity methods for estimating tree transpiration? Forests 2017 , 8, 350. [CrossRef]

        9. Bleby, T.M.; McElrone, A.J.; Burgess, S.S.O. Limitations of the HRM: Great at low flow rates, but no yet up to speed? In Proceedings of the 7th International Workshop on Sap Flow: Book of Abstracts, Seville, Spain, 22–24 October 2008.

        10. Pearsall, K.R.; Williams, L.E.; Castorani, S.; Bleby, T.M.; McElrone, A.J. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions. Funct. Plant Biol. 2014, 41, 874–883. [CrossRef]

        11. Clearwater, M.J.; Luo, Z.; Mazzeo, M.; Dichio, B. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ. 2009 , 32, 1652–1663.[CrossRef]

        12. Green, S.R.; Romero, R. Can we improve heat-pulse to measure low and reverse flows? Acta Hortic. 2012 , 951, 19–29. [CrossRef]

        13. Green, S.; Clothier, B.; Perie, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 2009, 846, 95–104. [CrossRef]

        14. Ferreira, M.I.; Green, S.; Concei??o, N.; Fernández, J. Assessing hydraulic redistribution with the
        compensated average gradient heat-pulse method on rain-fed olive trees. Plant Soil 2018 , 425, 21–41.
        [CrossRef]

        15. Romero, R.; Muriel, J.L.; Garcia, I.; Green, S.R.; Clothier, B.E. Improving heat-pulse methods to extend the measurement range including reverse flows. Acta Hortic. 2012, 951, 31–38. [CrossRef]

        16. Testi, L.; Villalobos, F. New approach for measuring low sap velocities in trees. Agric. Meteorol. 2009 , 149, 730–734. [CrossRef]

        17. Vandegehuchte, M.W.; Steppe, K. Sapflow+: A four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements. New Phytol. 2012, 196, 306–317. [CrossRef] [PubMed]

        18. Kluitenberg, G.J.; Ham, J.M. Improved theory for calculating sap flow with the heat pulse method.
        Agric. For. Meteorol. 2004, 126, 169–173. [CrossRef]

        19. Vandegehuchte, M.W.; Steppe, K. Improving sap-flux density measurements by correctly determining
        thermal diffusivity, differentiating between bound and unbound water. Tree Physiol. 2012 , 32, 930–942.
        [CrossRef]

        20. Looker, N.; Martin, J.; Jencso, K.; Hu, J. Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agric. For. Meteorol. 2016, 223, 60–71. [CrossRef]

        21. Edwards, W.R.N.; Warwick, N.W.M. Transpiration from a kiwifruit vine as estimated by the heat pulse
        technique and the Penman-Monteith equation. N. Z. J. Agric. Res. 1984, 27, 537–543. [CrossRef]

        22. Becker, P.; Edwards, W.R.N. Corrected heat capacity of wood for sap flow calculations. Tree Physiol 1999 , 19, 767–768. [CrossRef]

        23. Hogg, E.H.; Black, T.A.; den Hartog, G.; Neumann, H.H.; Zimmermann, R.; Hurdle, P.A.; Blanken, P.D.;
        Nesic, Z.; Yang, P.C.; Staebler, R.M.; et al. A comparison of sap flow and eddy fluxes of water vapor from a
        boreal deciduous forest. J. Geophys. Res. 1997, 102, 28929–28937. [CrossRef]

        24. Barkas, W.W. Fibre saturation point of wood. Nature 1935, 135, 545. [CrossRef]

        25. Kollmann, F.F.P.; Cote, W.A., Jr. Principles of Wood Science and Technology: Solid Wood; Springer: Berlin Heidelberg, Germany, 1968.

        26. Swanson, R.H.; Whitfield, D.W.A. A numerical analysis of heat pulse velocity and theory. J. Exp. Bot. 1981 ,32, 221–239. [CrossRef]

        27. Barrett, D.J.; Hatton, T.J.; Ash, J.E.; Ball, M.C. Evaluation of the heat pulse velocity technique for measurement of sap flow in rainforest and eucalypt forest species of south-eastern Australia. Plant Cell Environ. 1995 , 18, 463–469. [CrossRef]

        28. Biosecurity Queensland. Environmental Weeds of Australia for Biosecurity Queensland Edition; Queensland Government: Brisbane, Australia, 2016.

        29. Steppe, K.; de Pauw, D.J.W.; Doody, T.M.; Teskey, R.O. A comparison of sap flux density using thermal
        dissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010 , 150, 1046–1056. [CrossRef]

        30. López-Bernal, A.; Testi, L.; Villalobos, F.J. A single-probe heat pulse method for estimating sap velocity in trees. New Phytol. 2017, 216, 321–329. [CrossRef] [PubMed]

        31. Forster, M.A. How significant is nocturnal sap flow? Tree Physiol. 2014, 34, 757–765. [CrossRef] [PubMed]

        32. Cohen, Y.; Fuchs, M.; Falkenflug, V.; Moreshet, S. Calibrated heat pulse method for determining water uptake in cotton. Agron. J. 1988, 80, 398–402. [CrossRef]

        33. Cohen, Y.; Takeuchi, S.; Nozaka, J.; Yano, T. Accuracy of sap flow measurement using heat balance and heat pulse methods. Agron. J. 1993, 85, 1080–1086. [CrossRef]

        34. Lassoie, J.P.; Scott, D.R.M.; Fritschen, L.J. Transpiration studies in Douglas-fir using the heat pulse technique. For. Sci. 1977, 23, 377–390.

        35. Wang, S.; Fan, J.; Wang, Q. Determining evapotranspiration of a Chinese Willow stand with three-needleheat-pulse probes. Soil Sci. Soc. Am. J. 2015, 79, 1545–1555. [CrossRef]

        36. Bleby, T.M.; Burgess, S.S.O.; Adams, M.A. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct. Plant Biol. 2004 , 31, 645–658.[CrossRef]

        37. Madurapperuma, W.S.; Bleby, T.M.; Burgess, S.S.O. Evaluation of sap flow methods to determine water use by c*ted palms. Environ. Exp. Bot. 2009, 66, 372–380. [CrossRef]

        38. Green, S.R. Measurement and modelling the transpiration of fruit trees and grapevines for irrigation
        scheduling. Acta Hortic. 2008, 792, 321–332. [CrossRef]

        39. Intrigliolo, D.S.; Lakso, A.N.; Piccioni, R.M. Grapevine cv. ‘Riesling’ water use in the northeastern United
        States. Irrig. Sci. 2009, 27, 253–262. [CrossRef]

        40. Eliades, M.; Bruggeman, A.; Djuma, H.; Lubczynski, M. Tree water dynamics in a semi-arid, Pinus brutia
        forest. Water 2018, 10, 1039. [CrossRef]

        41. Zhao, C.Y.; Si, J.H.; Qi, F.; Yu, T.F.; Li, P.D. Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regul. 2017, 82, 353–362. [CrossRef]

        42. Deng, Z.; Guan, H.; Hutson, J.; Forster, M.A.; Wang, Y.; Simmons, C.T. A vegetation focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations. Water Resour. Res. 2017, 53, 4965–4983. [CrossRef]

        43. Doronila, A.I.; Forster, M.A. Performance measurement via sap flow monitoring of three Eucalyptus species for mine site and dryland salinity phytoremediation. Int. J. Phytoremed. 2015, 17, 101–108. [CrossRef]

        44. López-Bernal, á.; Alcántara, E.; Villalobos, F.J. Thermal properties of sapwood fruit trees as affected by
        anatomy and water potential: Errors in sap flux density measurements based on heat pulse methods. Trees
        2014, 28, 1623–1634. [CrossRef]

        其他推薦產品更多>>

        感興趣的產品PRODUCTS YOU ARE INTERESTED IN

        環保在線 設計制作,未經允許翻錄必究 .? ? ? Copyright(C)?2021 http://www.gzuyi.com,All rights reserved.

        以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,環保在線對此不承擔任何保證責任。 溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。

        會員登錄

        ×

        請輸入賬號

        請輸入密碼

        =

        請輸驗證碼

        收藏該商鋪

        登錄 后再收藏

        提示

        您的留言已提交成功!我們將在第一時間回復您~
        主站蜘蛛池模板: 免费无码肉片在线观看| 亚洲精品欧美重口| 亚洲欧美牲交| 四虎永久精品在线视频| 天天色综网| 中文字幕无码av不卡一区| 国产91久久久久久| 日本欧美一区二区三区在线播放 | 日韩国产精品无码一区二区三区| 日本一区二区三区专线| 一级毛片网| 国产精品日韩中文字幕| 亚洲成a人片在线观看88| 免费AV片在线观看网址| 成人免费无遮挡在线播放| 久久久久中文字幕精品视频| 亚洲av无码成人精品区一区| 天天综合网亚洲网站| 国产超碰无码最新上传| 人妻少妇精品中文字幕| 四虎成人精品| 69精品在线观看| 婷婷丁香五月六月综合激情啪| 亚洲最大成人在线播放| a级毛片网| 毛片a级毛片免费观看免下载| 日韩精品有码中文字幕| 一本色道久久东京热| 男女性杂交内射女bbwxz| 国产成在线观看免费视频| 久久亚洲国产最新网站| 国产精品久久露脸蜜臀| 亚洲色成人一区二区三区人人澡人人妻人人爽人人蜜桃麻豆 | 五月丁香在线视频| 高清欧美性猛交XXXX黑人猛交| 成人午夜av在线播放| 日韩精品国产中文字幕| 狠狠做五月深爱婷婷天天综合| 亚洲成人动漫av在线| 国产片AV国语在线观看手机版| 一本色道久久东京热|